BUSSTEPP Homework 3:
More Exercises on Numerical Quantum Mechanics
Other Exercises

September 2, 2003

1 Numerical Exercises

1.1 Harmonic Oscillator

We continue with the harmonic oscillator,

Vix) = %muﬂxQ, (1)
N-1

S =ma { Z iy — ) /a)* + ;(wa)Z(xi/a)z} ) (2)
i=0

Exercise ITII.1: Run with the parameters in Table 1 to vary the lattice spacing. Plot Ey, Fs, and Ey/FE;
vs. a. Verify also that the energies do not depend on m. Results are in Fig. 1.
Explain the striking constancy of Es/FE; = 2.

Solution ITI.1: The canned programs require somewhat different input (a, 7, N):

a 0.5 1 2 4 8
T/ 2 2 2 2 2
N | 128 64 32 16 8

Make a directory for each parameter set, with appropriate input files, abtain F; and F5 from effective
masses.

Because the system is quadratic, we can solve for all eigenvalues of the transfer operator. First set
x = gy/a/m, which scales m out of the problem. The transfer operator:

(T0) (gesn) = j;ﬂ

The simple harmonic oscillator has wave functions

exp {—3[1+ $(wa)?lgi 1 + qerrar — 3[1+ 5(wa)?]qf } U (xy)

du 12,5
\I/n :Nnea2q2/ u”eiZu +2w¢uq’
() Wor



Table 1: Parameters for exploring the dependence on a.
ma| 05 1 15 2 3
wa | 05 1 15 2 3
N | 128 64 44 32 22
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Figure 1: E; and F» vs. lattice spacing a. The points are Monte Carlo simulation. The lines
are the exact solution at non-zero a.



choosing an integral representation, because we have T in an integral representation. For now « is
not known. A straightforward, but tedious, manipulation of Gaussian integrals shows that W, is an
eigenfunction of T with eigenvalue

1
—(n+35)Fa
T, =e (n+3) ,

where
cosh(Ea) = 1+ % (wa)? = Ea = 2sinh_1(%wa).
One finds that this works out if o = 2sinh(Ea).
Thus, all the discretization effect can be absorbed into a redefinition of the frequency.

1.2 Anharmonic Oscillator
Now add an anharmonic term

V(z) = imw?a® + \a?, (3)

N-1
S =ma { Z %[$i+1 - fﬂi)/a]Q + %(wa)Q(:pi/a)Q + ()\a5/ma)($i/a)4} . (4)

1=0

From first-order perturbation theory

()

[ <1+3)\(n+1)>

2m2w3

so the correction is small if A < m2w?. The energies as a function of A are shown in Fig. 2

Exercise I11.2: Compute the energies F; and F, as a function of A at a lattice spacing so that dis-
cretization effects are small. Start with A small enough so that perturbation theory should be accurate,
but extend into the non-perturbative regime.

Solution III.2: My result used ma = wa = 1 and \a®.

1.3 Double-well Oscillator
The exercise in this subsection uses the potential
Vix) = —%mw%? + Azt (6)

Note the minus sign in front of the quadratic term. There are two minima. Now the first excited
state is almost degenerate with the ground state.

Exercise II1.3: Return to the program that compute z,v, as a function of c. Plot them vs. c. Explain
the behavior of z,y,, Fig. 77.

Solution III.3: So far I have not found a set of simulation parameters such that the system switches
back and forth. If you find some, e-mail ask@fnal.gov
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Figure 2: F; and Es vs. anharmonicity A, in lattice units.



2 Other Exercises

The Standard Yukawa interactions of quarks are

G
£y == 7 [#QLo Df + 35QLOVE +he ] -

ij=1

with hypercharges Yy = 2/3, Yp = —1/3, Yo = 1/6.

Exercise II1.4: What must the hypercharge of the Higgs doublet(s) be?

Solution III.4:

Y, =1/3+1/6=1/2
Yy = —2/3+1/6=—1/2

In continuum gauge theories the parallel transporter (or Wilson line) is defined to be

Ulz,y) = Pexp (/:dz-A>. (8)

Exercise II1.5: Show that U(x,y) — g(2)U(z,y)g ' (y) under gauge transformations.

Solution ITL.5: The proof is immediate for an infinitesimally short path. Any path can be built out of
short paths, by definition of the path-ordering symbol.

The Wilson plaquette action is

B
5= 3% ;ﬂ; Py () 9)
where
P = Retr[l — Uu(2)U,(z + ae") U (z + ae®)) U} ()] (10)

Exercise II1.6: Show that the plaquette action reduces to the Yang-Mills action when a — 0.

Solution ITI.6: It is convenient to focus on a single uv plaquette, located (for convenience) at the
origin 0. Choose a gauge so that A,(z) = 0. Fix the gauge further so that on the hypersurface z, = 0
A, (x) =0 too. Then

1
P, (0) = Retr[l — Ul (ae™)] = Retr{l — Pexp[—a A, (sae))ds
0 p 0o "

5



Now in this gauge
A, (sae™) = A,(0) + sad, A, = sad, A,

because A, (0) = 0 when x, = 0. The first term to survive the trace is the second order in sad, A,:
P (0) = —a*Retr{4(8,4,,(0))2) == —a*L tr[(F,,(0))?]

The last equality holds in our gauge F,,(0) = 0, A,. Since the left-most and right-most expressions are
both gauge invariant, they hold in all gauges.
Next repeat for all plaquettes, yielding

Pule) = —a S tel(F(@)?) = +7 3 (F5)?

no sum on . With my convention for the generators tr[t*t?] = —14°°.
Thus

> Pule) =a' Y J @) = [ dla (B @)

NN

with summation conventions on the right-hand side. Normalization indentifies 8/2N = 1/g3.




